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A theory is constructed for rotating plane Couette flow of ferrofluid that is subject
to the field generated by a periodic array of magnets. The system that is analysed
contains a substantial lateral magnetic buoyancy, or magnetic gravity, allowing the
configuration to be used in experimental studies of stratified shear flows in a connected
geometry.

However, the spatial variation of the magnetic vector field of the magnet stack leads
to magnetically generated wavy flows via the action of flow vorticity on the particle
orientation in the suspension. The basic rotating Couette flow instabilities may also
be affected by the same mechanism, which is sometimes referred to as rotational
or ‘magnetic viscosity’. Theoretical calculations show that the directly excited wavy
flows are generally small, for anticipated experimental conditions, except when they
resonate with the natural linear instabilities of the Couette flow. A weakly nonlinear
analysis is carried out in order to predict the behaviour in these cases. Magnetic
effects stabilize the fundamental roll instability of rotating Couette flow by about
10% for a typical laboratory realization.

1. Introduction
Taylor–Couette flow between differentially rotating cylinders, and the dynami-

cally related problem of rotating channel flow, are classic configurations permitting
comparisons of stability theory and experiments, studies of the transition to turbu-
lence, and diagnoses of fully developed turbulence. Studies of these systems include
Hart (1972), Johnston, Halleen & Lezius (1972), Tafti & Vanka (1991), Kristoffersen
& Andersson (1993), Tagg (1994), and Piomelli & Liu (1995), amongst many others.
A natural and desirable extension to these experiments is the addition of a den-
sity stratification and a gravitational buoyancy force that are perpendicular to the
vertical walls and to the imposed vertical rotation vector. Such a physical arrange-
ment would permit valuable observations of instability, transition, and turbulence in
stratified shear flows. For example, we could study thermal convection in the pres-
ence of ‘vertical’ shear, a problem treated theoretically by Matthews & Cox (1997).
Alternatively, it would be possible to investigate the effects of radial buoyancy on
the stationary axisymmetric and the propagating non-axisymmetric instabilities of
the Taylor–Couette system. Such studies would have many applications, from basic
engineering to geophysical and astrophysical problems.

However, it is not easy to generate a ‘radial gravity’ in the Taylor–Couette geometry,
or to produce a horizontal ‘lateral gravity’ in the case of a channel flow rotating about
its vertical axis. In the former situation, very rapid rotation of both the inner and outer
cylinders can lead to a dynamically significant radially directed centrifugal buoyancy
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force. The linear instability theory for this problem, in the thermally unstable case
with the outer wall heated, has been studied by Kropp & Busse (1991). However, only
a small segment of the usually accessible Ωi/Ωo parameter plane can be addressed
using this method. The two rotation rates must be large and nearly equal, so the
motions necessarily will have small Rossby number and will be strongly constrained
by rotation.

Hart, Glatzmaier & Toomre (1986) used dielectric polarization forces in a spherical
capacitor to study thermal convection in a rotating hemispherical shell with radial
gravity. Both low and rapid rotation rates were studied. The apparatus had to be
relatively small (radius ∼ 3 cm, gap ∼ 0.9 cm) in order that the electric field gradients
(which decay as 1/r3) could be made large enough to give a large electrodynamic
Rayleigh number. Ferrofluids have also been used to study geophysical problems
experimentally, which particularly benefit from radial gravity. Ohlsen & Rhines
(1997) looked at interfacial waves in a fluid held onto a sphere by centrally directed
magnetic forces. The gravity used was relatively weak, and the whole system was
placed in a neutral density two-fluid Plateau configuration, but the basic concepts of
magnetic construction of radial buoyancy were demonstrated.

In a physical system that can attain both large Reynolds number and unit Richard-
son number, the artificial gravity must be large, and this requires a new experimen-
tal method. For example, consider a plane Couette flow in a gap of width D,
with velocity U, which uses a low-viscosity organic oil (e.g. a 1 centistoke silicone
oil) as a working fluid. In order to obtain a large value of Re = UD/ν, with
Ri = glα∆TD/U

2 = glα∆TD
3/Re2ν2 ∼ 1, a substantial lateral (cross-channel) gravity

gl is required. Suppose the expansion coefficient, applied temperature contrast and gap
width of the cell are given by α = 0.001 ◦C−1, ∆T = 10 ◦C, D = 0.02 m, respectively. If
we demand that Re ∼ 2000, then gl must be about 40 m s−2, or about 4 g. This paper
outlines a conceptual design for a multi-g stratified shear flow experiment using a
special arrangement of high-power magnets. The configuration discussed below leads
to a large unidirectional magnetic gravity, but it also contains a highly structured
spatially varying magnetic field. The interaction of such structured fields with vor-
tical flows of ferrofluid has received little attention. In order to achieve a viable
stratified shear flow experiment, it is desirable that so-called rotational viscosity (or
‘magnetic viscosity’) effects should not have a substantial impact on the basic flows
and instabilities in the experiment.

Several authors have studied aspects of the Taylor–Couette instability in ferrofluid
with relatively simple imposed magnetic fields. Niklas (1987) considers the stability
of ferrofluid in the narrow-gap Taylor–Couette problem with a uniform axial field, a
1/r azimuthal field, or a 1/r radial field. The fields are considered uniform over the
fluid-filled gap. The critical Taylor number is predicted to rise with Niklas’s particular
rotational viscosity parameter. The effect is not large, but may be observable under
practical conditions. Stiles, Kagan & Hubbard (1987) similarly predict a small increase
of Taylor number (up to 30%) with increasing magnetic field strength for a model cell
with a uniform axial field. Measurements of inner cylinder torque in the presence of a
modest axial field by Holderied, Schwab & Stierstadt (1988) suggest an increase of a
few per cent in the critical inner cylinder rotation rate. Niklas, Muller-Krumbhaar &
Lucke (1989) consider fields with a symmetry axis inclined to the axis of the Taylor–
Couette cell. Stiles & Blennerhassett (1993) treat radial fields coupled with thermal
gradients and find that magnetic buoyancy can destabilize the fluid. Their magnetic
gravity effect was deemed small, and would normally be swamped by terrestrial
gravity. Such destabilization might be seen in a microgravity environment.
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The sorts of fields examined in these studies do not lead to strong radial magnetically
induced buoyancy. Large-amplitude fields with axial and azimuthal symmetry are very
difficult to implement across an apparatus of substantial size (so that the Reynolds
number is large). The previous stability analyses did not consider any alteration to
the classic Ar+B/r basic state of Taylor–Couette flow by the interactions between the
suspended particles, the basic flow shear, and the magnetic fields. Such changes will
be absent if the applied field is axial and uniform. However, alterations to the classic
mean flow are expected for many of the field distributions used in these studies, such
as a radial 1/r field or an azimuthal 1/r field (Bashtovoy, Berkovsky & Vislovich 1988).
The magnet-stack configuration considered here contains fields that vary substantially,
even in a narrow gap. It is desirable to investigate the effects of these highly structured
fields on basic flows and instabilities. In this paper, we investigate alterations to the
basic state of plane rotating Couette flow when a spatially varying magnetic field is
imposed on a channel filled with either weakly magnetized or magnetically saturated
ferrofluid. In addition to modifying the basic state, the magnetic fields can also lead to
changes in the critical points of linear instability because of magnetic forces acting on
the unstable rolls themselves. These effects are estimated using perturbation theory.
The formal statement of the problem is given in § 2. The linear analysis of § 3 shows
that for most parameter settings and realistic experimental condition, the basic state
changes should be small. However, resonances can arise when the magnetic viscosity
terms force structures that excite the natural instability modes of the system. Section 4
outlines the nonlinear analysis that determines the expected corrections in resonant
cases. Section 5 describes the magnetic viscosity effects on roll instabilities, and § 6
summarizes this study.

2. Formulation of the problem
For simplicity in analysis we consider a rectilinear geometry. The basic ideas apply to

the Taylor–Couette problem, especially in the narrow-gap Ωi/Ωo ∼ 1 approximation,
when the results will carry over directly (Appendix B). As shown in figure 1, we
consider a long channel, infinite in y, which is rotating about the vertical axis at rate
Ω. The gap spacing is d and the ferrofluid is assumed to have Newtonian kinematic
viscosity ν. Motion is driven in the contained ferrofluid by uniform longitudinal
translation of the outer wall. This leads to a simple basic-state shear flow ub = Uxŷ/d.
The key ingredient is a tall stack of rectangular bar magnets mounted to one
side of the channel. The magnets are separated by non-magnetic spacers. In our
idealized geometry, the bars are infinitely long in y. Each bar is magnetized with
uniform magnetization MBẑ, directed vertically. In practice, neodymium–iron–boron
magnets can have surface strengths approaching 1 tesla (10 000 gauss). The actual
laboratory version will use cylindrical disk magnets, surrounded by a Taylor–Couette
cell with variable speed inner and outer walls that can be maintained at different
temperatures.

The equations of motion in the rotating frame of reference are, following Bashtovoy
et al. (1988 ch. 6):

∂u/∂t+ u · ∇u+ 2Ω× u− ν∇2u+
1

ρ0

∇p =
µ0

ρ0

M · ∇H +
µ0

2ρ0

∇× (M ×H) ≡ am, (1a)

∇ · u = 0, (1b)

where M is the magnetization, H is the field intensity, µ0 is the free-space permeability,
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Figure 1. Cross-section of the model. A tall stack of bar magnets of height h and separation H
(infinitely long in y) are set next to a vertical channel holding ferrofluid. Motion is driven by the
uniform translation of the outer boundary. The system, including the magnets, rotates at rate Ω
about the vertical axis.

and ρ0 is the background density under the Boussinesq approximation where

ρ = ρ0(1− α(T − T0)).

The first magnetic term on the right-hand side of (1a) is the normal term resulting from
the divergence of the electromagnetic stress tensor. The second magnetic term arises
when we include the coupling of the internal spin rate of particles in the ferrofluid
to the fluid motion, along with conservation of internal angular momentum. We
operate in the limit where the motion time scale is much longer than the very short
(< µs) viscous relaxation time for the microscopic (∼ 10 nm diameter) particles in the
suspension. This formulation has been subject to various experimental tests, and is
discussed in Rosensweig (1985), Hubbard & Stiles (1986), Niklas (1987), and many
other references.

In the absence of relative motion, we expect the ferrofluid particles to align with
the imposed field. The last term of (1a) then vanishes. Suppose we want to construct
the analogue of a lateral (or radial gravity). Operating well below the Curie point,
the magnetization M

.
= M 0ρ/ρ0, because variations in density (by fluctuations of

temperature, for example) simply change the number of magnetite particles per unit
volume in the suspension. A stratified shear flow configuration in the channel of
figure 1 can be then attained if the ‘magnetic buoyancy’

glαT ≡ αT
[
µ0

ρ0

M · ∇H
]

(2)

is large and horizontal. In principle, it would be useful to have gl � g, both so that
the Richardson number can be large, and so that the experiment can be carried out
in the terrestrial laboratory.
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The following reasoning shows that this appears relatively easy to do. The magnetic
field is determined from the current-free Maxwell equations:

∇ ·B = 0, ∇×H = 0, B = µ0(H +M ). (3)

Since the saturation magnetization M of the ferrofluid is much less than H , to lowest
order we have

∇ ·B = ∇× B = 0,

or

B = −∇ϕ, ∇2ϕ = 0. (4)

Suppose the magnet stack is very tall compared with the height of the fluid channel.
If it is infinitely high, the magnetic potential just to the right of the magnets (i.e. in
the free space x > −Lm) can be written as

ϕ =

∞∑
n=1

Bn exp(−nk∗x) sin(nk∗z)/nk∗, (5)

where the origin of z is taken to be the zero plane for Bx, and k∗ ≡ 2π/H is the
dimensional vertical wavenumber of the magnet stack. A (complicated) matching to
the solution inside the stack, for x 6 −Lm, determines the coefficients. However, if
the channel is far enough away from the stack, in its vicinity only the first term in
the sum will be significant. Under these circumstances, the basic state magnetic field
B0 is given by

ϕ = B1 exp(−k∗x) sin(k∗z)/k∗,
B0 = [B1 exp(−k∗x) sin(k∗z), 0− B1 exp(−k∗x) cos(k∗z)]. (6)

Here, B1 is the measured (or calculated from the full problem) field amplitude at
the left-hand wall of the channel. Figure 2 illustrates the field geometry. Although
relatively complex in structure, compared with the field configurations used in previous
studies, the magnitude of the field

B ≡ |B0| = B1 exp(−k∗x) (7)

is very simple, and, as shown below, leads to a lateral gravity that can have the desired
strength.

Figure 3 illustrates a numerical computation of the complete magnetostatic problem
of the B-field due to the stack of 17 cylindrical magnets. Note the similarity of the
contours of Bẑ with the model above. For r > 1 cm, the field magnitude falls off
almost exactly exponentially, with a uniform rate that corresponds to the vertical
separation of the magnets. Detailed comparisons show good agreement between (6)
and (7) and the medium-radius behaviour calculated numerically. At large radii,
contributions from the dipole due to the finite stack height come into play, and the
pure exponential decay is lost. When this happens, the magnetic body force, though
conservative, is no longer purely horizontal. A similar effect occurs at distances closer
to the magnet stack. The sum of two or more spatial modes of (5) no longer has a
field magnitude that is unidirectional (i.e. it is now dependent on both x and z).

The lowest-order magnetization models for ferrofluid are taken to be:

M = Mw = χH (8a)

M = M s = MsĤ (8b)
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Figure 2. Bẑ distribution in the (x, z)-plane for the simple model (equation (6)).

These ‘weak’ and ‘saturated’ magnetization idealizations assume the suspended mag-
netite dipoles line up, to first approximation, with the applied field. Linear behaviour
occurs in fields of order 0.1 tesla or smaller, while saturation can be achieved in fields
of order 0.3 tesla or greater. Inserting these models into the right-hand side of (2)
gives the magnetic buoyancy terms

αTµ0[χ∇H2]/ρ0 ≈ αT [χ∇B2]/ρ0 = −2k∗αTχB2
1 exp(−2k∗x)x̂/ρ0,

αTµ0[Ms∇H]/ρ0 ≈ αT [Ms∇B]/ρ0 = −k∗αTMsB1 exp(−k∗x)x̂/ρ0,
(9)

respectively. This is the basis for our experimental programme to construct a device
with a strong radial (or lateral) buoyancy force. For powerful magnets, separated by
H ∼ 10 cm, and assuming that the ferrofluid is saturated, the lateral gravity is large.
Taking B1 = 0.3t (3000 G), Ms = 1.5× 104A m−1, k∗ = 60 m−1, ρ0 = 1200 kg m−3, we
find gl ≈ 20g at x = 0.

The magnetization formulae (equation (8)) are only a leading-order approximation.
It has long been known that in the presence of a shear flow, the magnetic particles will
twist out of line with H . Shliomis (1972, 1974), proposed a model of this effect. We
shall employ his relatively simple magnetization deviation formula that is valid in the
limit where the motion time scale is long compared to the magnetization relaxation
time. This is

M ′ = τ
M0

2H0

(∇× u)×H0). (10)

The magnetization and field intensity have been expanded according to M = M 0+M ′,
H = H0 +H ′, where the primed fluctuations are assumed to be small compared with
the basic states. The lowest-order magnetization is obtained from (8) with H = H0,
which is just B0/µ0. In obtaining (10) from the complete internal angular momentum
balance and the full magnetization relaxation equation (as given in Niklas 1987, for
example), H ′ is neglected under the rationale cited in Appendix A. The parameter

τ ≡ τb

(1 + τbµ0M0H0/6νρ0φ)
≡ τb

(1 + aτbµ0M0H0)
(11)
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Figure 3. (a) Magnetic field Bẑ for a stack of 17 cylindrical disk magnets 0.48 cm high and 0.9 cm
in radius, with H = 1.2 cm. Contours are logarithmic. (b) Magnitude of the field |B| vs. radius at
z = 0 (the mid-plane of the stack).

is the modified magnetization decay time, where τb is the normal Brownian relaxation
time (∼ 10−6 s), and φ is the volume fraction of the suspension (typically 0.1–0.5). The
computations are simplified if we consider τ ≈ τb = constant. This assumption is solid
for weak fields and (8a). The numbers for the strong gravity generation listed above,
along with ν = 4 × 10−6 m2 s−1, give aτbµ0M0H0 ∼ 0.4 for a high-stress saturated
case. Some effects of including this latter term are investigated below, but the more
complicated parts of the analysis are simplified without it.

3. Linear analysis
The basic state for plane Couette flow is ub = Uxŷ/d. Using H0 = B0/µ0, along

with (6) and (8), yields M 0 from (8). Substitution into (10), and using the resulting
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M ′ in the right-hand side of (1a) leads to the following magnetic acceleration terms
that drive corrections to the basic state:

am(linear(8a)) = −τχk
∗UB2

1

4µ0d
exp(−2k∗x)ŷ, (12a)

am(saturated(8b)) = −τk
∗UMsB1

8d
[exp(−k∗x) + exp(−k∗x) cos(2k∗z)]ŷ. (12b)

In obtaining these results, it is again assumed that contributions from the magnet-
ization correction M ′ dominate over those arising from the coupling of the magnetic
field correction H ′ and the zeroeth-order magnetization M 0. The basis for this is
outlined in Appendix A. It is interesting that z-dependence only appears for the
saturated magnetization model.

In all that follows we deal with non-dimensional equations, using U and d as
velocity and length scales, respectively. The z-independent forcing terms in (12) serve
to drive simple viscously balanced flows, solely in the y-direction, that are determined
exactly (i.e. at any amplitude) from

∂2V

∂2x
=
d2am

Uν
, (13)

with V (0) = V (1) = 0. Once V is determined, the dynamic pressure correction is
obtained from geostrophic balance. The results for linear and saturated magnetization
are:

Vlinear = Clin[1− x− e−2kx + xe−2k],

Vsat = Csat [1− x− e−kx + xe−k],

}
(14a)

where
Clin = −τχB2

1/16νρ0µ0k,

Csat = −τMsB1/8νρ0k,

}
(14b)

and

k ≡ k∗d = 2πd/H (15)

is the non-dimensional vertical wavenumber of the magnet stack.
Equation (13) is simple enough that the basic state corrections can be found without

any approximation to τ. In this instance

am =
−τbMsUk

∗B1e
−kx

4d(1 + a2M2
s B

2
1e−2kx + 8aMsB1e−kx)

,

and

Vsat-fullτ =

−Csat

ln(aMsB1 + ekx)− ln(ekx)− x ln(aMsB1 + ek) + kx+ (x− 1) ln(aMsB1 + 1)

aMsB1

.

Figure 4(a) shows the profiles of V for the constant-τ case. Some numerical values
illustrate the expected magnitude of these corrections. We set:

d = 0.02 m, τb = 10−6 s, χ = 0.01, B1 = 0.3 tesla, ν = 5× 10−6 m2 s−1,

Ms = 15 000 A m−1, ρ = 1200 kg m−3, k = 2. (16)

These numbers reflect a workable configuration using quite strong neodynium–iron–
boron magnets (nominal axial surface strength of order 3000 G) and a water-based
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Figure 4. (a) The non-dimensional z -independent alteration to the basic flow V (x), normalized
by U ) for both the saturated magnetization model, and the linear magnetization model. The
non-dimensional magnet stack wavenumber k = 2 (see (15)). The amplitudes Clin and Csat are deter-
mined from equation (14b). (b) Effects of non-uniform τ (see (11)) on the saturated magnetization
correction V (x) calculated with numerical values given in (16).

ferrofluid with a saturation magnetization that is small enough that the viscosity is not
too large (Rosensweig 1985 table 2.4). These parameter settings give Clin = −0.00375,
Csat = −0.0468. As expected, the weak magnetization limit does not generate a
significant basic-state alteration, but the high-field saturated case leads to about a
1.5% peak correction. The corrected flow is opposite to the basic linearly sheared
current, but has no inflection points. For these same parameters, figure 4(b) shows the
solution using the full expression for τ. Even though the size of a is not well known,
its effect is to decrease the size of the modification to the basic current.

The above analysis shows that height-invariant corrections to the basic state are
generated. These are similar to those calculated by Bashtovoy et al. (1998) for a
hypothetical travelling-wave magnetic field, generated at a current sheet, that has a
shape (when travelling with the wave) identical to that in (6). However, Bashtovoy
et al. did not discuss the vertically wavy modes. Using the second term in (12b) as
the forcing, the z-dependent steady two-dimensional problem is solved by assuming
a small response (compared with U), and linearizing the equations of motion. We
consider here only the stronger saturated-magnetization limit, where we must obtain
the solution of

∇6ψ + Qψzz =
Rod

E2U2
amŷz ≡ fz, vz = −E∇2ψ. (17)

Here,

fz =
Λ

E
k2e−kx sin(2kz), (18a)

u = ψz, w = −ψx, (18b)

Γ ≡ τMsB1

4νρ0

= −2kCsat, (18c)

and

Q ≡ (1 + Ro)/E2 = (1 + Ro)/Ta. (19)

Ro is the Rossby number for the basic flow U/2Ωd, and E is the Ekman number
ν/2Ωd2.
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There is a direct analogy with the rigid-wall thermal convection problem. The
PDE on the left-hand side of (17) is the same as that for two-dimensional steady
convective roll instabilities, after exchanging the roles of x and z. Q is equivalent to
the negative of the Rayleigh number. The boundary conditions are impermeable and
no-slip: ψ = ψx = ∇4ψ = 0 at x = 0, 1. The solution is

ψ = −Γ e−kx sin(2kz)

27k4 + 4Q
+ ψh, ψh = φ(x) sin(2kz). (20)

The addition of the six homogeneous solutions, ψh, which have sin(2kz) vertical
structure, is required to satisfy the boundary conditions. The solutions are found by
symbolic manipulation (using MAPLE). The complex-exponential solutions are made
up of six modes aj exp(rjx), with (r2 − 4k2)3 − 4k2Q = 0. The unknown coefficients
aj are found by applying the boundary conditions to (20). There is an apparent
singularity if Q = −27k4/4. However, the total solution is smooth across this point
because the homogeneous solution has a shape there that is very close to the forced
mode. It must be subtracted to satisfy ψ(x = 0, 1) = 0, say, rendering the total ψ
finite at the singularity.

However, when Q < 0, the required free solution may be resonant. This happens
whenever Q is an eigenvalue of the force-free version of (17) with modes proportional
to exp(ik′x) with k′ ≡ 2k. For example, if k′ = 3.117, that is for magnet wavenumber
1.5585, the linear solution fails if Q = −1708 (the critical Rayleigh number) since
then the homogeneous solutions do not have enough degrees of freedom to satisfy
all six boundary conditions. Mathematically, the determinant of the coefficients of
the six non-homogeneous equations for the aj terms vanishes whenever Q sits on the
neutral curve for rigid boundary thermal convection problem (i.e. Q = −Ra(k′)).

Figure 5 shows the magnitude of the response on the (k, Q)-plane. The magnitudes
are relatively small, except along the neutral curve of thermal convection. The shape of
the total x-dependent parts of (20) are illustrated in figure 6. As −Q increases at fixed
k′, the homogeneous solutions correspond to higher cross-channel modes (equivalent
to higher vertical modes in the thermal convection problem), and the total solution
has more structure. Away from resonance, the peak correction to the basic flow is
typically less than 1% of U. The z-dependent mean-flow corrections are weaker than
the z-independent ones because of the extra effect of vertical viscous diffusion. Though
in general relatively minor, these basic flow corrections could become significant for
resonant conditions. We now proceed to remove the resonances using a weakly
nonlinear expansion.

4. Weakly nonlinear results
First transform the variables using

ψ =
E

Ro
Ψ, v =

E2

Ro
V ,

so that the nonlinear equations of steady two-dimensional motion become

∇4Ψ + Vz = ∂∇2Ψ/∂t+ J(Ψ,∇2Ψ ), (21a)

∇2V − QΨz = ∂V/∂t+ J(Ψ,V ) +
Ro

2E2
Γke−kx cos(2kz), (21b)
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where J is defined as the advection operator, e.g. J(Ψ,V ) ≡ ΨzVx − ΨxVz . In the
usual way we construct an amplitude expansion of form

Ψ = AΨ1 + A2Ψ2 + A3Ψ3 . . . , (22a)

V = AV1 + A2V2 + A3V3 . . . , (22b)
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where ε ≡ (Q − Qc)/Qc � 1, and Qc is the rigid wall eigenvalue for a zero of the
left-hand side of (21) for modes with wavenumber k′ ≡ 2k. The small slow-time-
varying amplitude A(T ≡ |ε|t) is assumed to be of order |ε|1/2. The forcing term on
the extreme right-hand side of (21b) is assumed to be of order A3.

The eigenfunction Ψ1 = ϕ1(x) sin(k′z), V1 = V1(x) cos(k′z), is found analytically
from the homogeneous version of (21) obtained by omitting the right-hand sides.
Figure 7 illustrates the eigenfunction for a typical case. These solutions are then
iterated through the Jacobian operators to obtain the forced second-order problem.
In contrast to the case with free boundaries, with rigid walls the vorticity advection
in the fundamental roll mode does not vanish, and higher harmonics in z are excited.
Although these have a small effect on the amplitude equation, it makes the calculation
more tedious. Once Ψ2 and V2 are found, the solvability condition, in the form

〈−Qc1Ψ1L3Ψ + V1L3V 〉 = 0, (23)

is applied. Here, the brackets denote an integration across the channel and over
one wavelength of the perturbations vertically. L represents the forcing terms of the
third-order problem:

L3Ψ = |ε|∂∇2Ψ1/∂T + J(Ψ1,∇2Ψ2) + J(Ψ2,∇2Ψ1), (24)

L3V = |ε|∂V1/∂T − εQc∂Ψ1/∂z + J(Ψ1, V2) + J(Ψ2, V1) +
Ro

2E2
Γke−kx cos(2kz), (25)

where, T is the slow-time variable. The calculation again proceeds analytically via
automated symbolic manipulation.

The resulting amplitude equation can be written in the form

c0|ε|dA(T )/dT = −c1β + c2εA− A3, (26)

where β ≡ −Γ (Ro/E2). β is positive because Ro < −1 for instability (which is
required for resonance), and the c terms, as well as A, are real. The equilibration
amplitude(s) may be more easily obtained by writing

A = (c1β)1/3Λ, γ ≡ c2ε/(c1β)2/3, (27)

whence,

Λ3 − γΛ− 1 = 0. (28)

This equation has multiple real roots if γ > ( 27
4

)1/3 ∼ 1.89. In the case of multiple
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k′ −Qc c0 10 000 c1 c2

1 5854 0.747 3.11 6.39
2 2177 0.395 4.01 4.03
3 1711 0.285 3.63 3.61
3.117 1708 0.277 3.59 3.61
4 1879 0.231 2.72 3.68
5 2439 0.196 1.82 3.94
6 3418 0.169 1.16 4.29
7 4919 0.149 0.73 4.70
8 7085 0.133 0.46 5.15

Table 1. Terms in the amplitude equation (26).
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Figure 8. Stable branches of the equilibration equation (28).

roots, the two stable solutions have opposite signs and are the two largest (of the
three) in magnitude. The solutions to (28) are illustrated in figure 8.

The mechanism that produces multiple states is simple. As ε increases, the two
normal finite-amplitude instability modes, which are invariant to changes in the sign
of A, become large and uncoupled from the interaction between the vorticity and the
magnetic field. If ε (i.e. γ) is not large, the magnetic viscosity forcing will cause the
negative finite-amplitude mode to be enhanced (and undergo an imperfect pitchfork
bifurcation at ε = 0). At the same parameter settings, the positive amplitude mode
is suppressed. This continues until the positive A mode has sufficient strength to
overcome the negative magnetic effect, and we obtain two solutions at large enough
γ. In practice, if k′ = 2k is much different from 3.117, the k′ of lowest critical Q, in
order to be in a subcritical regime with respect to this most unstable linear mode, ε
will have to be large and negative. Under these circumstances there will be only one
stable solution of the equilibration problem.

As an example, consider a situation with the parameter values given in (16), which
has k = 2, or k′ = 4. For an extreme case we take ε = 0.35. In addition, we must
specify E. A large value is E = 0.05, which, under the conditions of (16), represents
a slow rotation (a 600 s period). For this situation, γ = 2.13 and there are two
stable solutions with a final peak amplitude for V of −0.118 or 0.079. That is, the
distribution of V ∗/U is given by these values multiplied by the structure function in
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figure 7, multiplied by cos(2kz). When ε and E are smaller, there is typically only one
solution. For example, if E = 0.005 (a 5 s period), and ε = 0.1, then γ = 0.087 and the
peak amplitude is −0.0278. This last example has Qc = −1879, and Q = −2066. The
most unstable free mode (which has Qc = −1708) sits at an effective supercriticality
of ε = 0.21 at this parameter point. Using the above model, this free mode has an
equilibrium amplitude A =

√
c2ε = 0.84. Thus, the magnetically induced longitudinal

rolls are small compared with the normal roll instability in the channel.

5. Effect of magnetic viscosity on instabilities
The above arguments show that the direct alterations to the basic state by non-

Newtonian stresses, arising from the field of the magnet stack and the vorticity of the
basic flow acting together on the particles in the ferrofluid, are not large. Such changes
will not significantly alter the expected instabilities. However, the magnetization
deviation is generated by the flow vorticity, and while the non-dimensional vorticity
of the basic state is unity, that of roll instabilities is expected to be at least 20 or
more, per unit amplitude. How do the magnetic forcing terms directly affect the linear
instability? Anticipating that the corrections to the non-magnetic results will be small,
and realizing that a full stability calculation will be complicated by non-constant-
coefficient ODEs (because of the non-uniform magnetic field (6)) we approach the
problem by perturbation expansion.

The linear stability equations can be written as

∇4Ψ ′ + ∂V ′/∂z = −Ro(∂fx̂/∂z − ∂fẑ/∂x), (29)

∇2V ′ − Q∂Ψ ′/∂z = −Rofŷ/E, (30)

where

f =
τMsU

2ρ0d

{
[(∇× u′)× B̂0] · ∇B0 + 1

2
∇× [((∇× u′)× B̂0)× B0]

}
, (31)

with u′ = Ψ ′z/E, and w′ = −Ψ ′x/E. The saturation magnetization model (8b), to
focus on the largest effects, and constant τ in the Shliomis model (10), to simplify the
computation as much as is reasonable, have been used in (31).

The fields are expanded according to Ψ ′ = Ψ ′1 + δΨ ′2 + . . . , V ′ = V ′1 + δV ′2 + . . . ,
with

δ ≡ Q− Qc
Qc

� 1. (32)

At lowest order the usual linear stability problem without magnetics is recovered and
Qc is determined. An oscillatory vertical structure Ψ ′ ∝ sin(k′(z+z0)) is assumed. The
rigid-wall eigenfunctions are found analytically as in § 4. As Q is made more negative,
the first longitudinal roll instability to be encountered has vertical wavenumber
k′ = 3.117 and Qc = −1708. As this is the most unstable mode, we concentrate on
finding only its change in stability. The computation of (31) is tedious, but fortunately
it is only necessary to go to second order to find δ. This is because (31), when
evaluated with the lowest-order velocities, projects onto the lowest-order instabilities,
and therefore resonance removal at second order determines δ. M ′ involves vertical
waves with wavenumber ±k′ ±k, representing the composite of the roll instability and
the periodicity of the magnet stack. When this is used in ∇× (M ′ ×B0), for example,
wavenumbers ±k′±k±k enter the forcing of the second-order problem. Therefore, the
second-order forcing has some components that project onto the vertical structure
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Figure 9. Vertical structure of the fundamental instability V and the second-order y-directed
magnetic-deviation-induced forcing fŷ . k

′ = 3, k = 2.5, Q = −1712.

(wavenumber k′) of the fundamental. This is illustrated in figure 9, which shows
that there is a height integrated correlation between V1 and fŷ . The result of the
perturbation expansion is,

δ =
〈QcRoΨ ′1[fx̂z(Ψ ′1, V ′1)− fẑx(Ψ ′1, V ′1)] + V ′1Rofŷ(Ψ ′1, V ′1)/E〉

Qc〈V ′1Ψ ′1z〉 = c3(k, k
′, Qc)

τMSB1

νρ0

.

(33)

The brackets describe an average over x from 0 to 1, and over z from 0 to Z . The last
limit, usually taken to be the vertical wavelength of the fundamental, 2π/k′, is now
the lowest vertical periodicity length that is commensurate with waves having both
k′ and k. The result of the calculation is independent of z0, the vertical phase of the
roll instability with respect to the magnets. The computation is again implemented
symbolically using MAPLE.

Figure 10 shows that the magnetic field stabilizes the roll perturbations. The
stabilization is strongest if the magnets are far apart (low k), whence the field lines
tend to be axial for large sections of the channel. The effect goes to zero as the
magnets in the stack are much closer together than the most unstable wavelength
(∼ 2d) so that the field effects wiggle back and forth many times in one vertical
cell height of the instability. There is a small twist in the curve when k ∼ k′
that is probably experimentally insignificant. For the laboratory parameters given in
(16) τMsBi/νρ0 = 0.75. A laboratory realization with k = 2.5 should then show a
stabilization of about 10% of critical. The parameter c3 does not vary substantially
with k′. For example, if k = 2.5 then c3 varies from 0.137 at k′ = 2 down to 0.130 at
k′ = 5. The magnetic viscosity will have little influence on wavenumber selection.

6. Conclusions and discussion
We have considered alterations to the basic linear velocity profile of rotating

channel flow in a magnetic fluid. These arise because the (constant) vorticity of the
channel flow interacts with the magnetic field imposed by the vertical stack of magnets
(figure 1) to produce a magnetic moment in the suspended particles that is no longer
aligned with the imposed field. This leads to a body force that generates both an
x-independent correction V (x), as well as a wavy correction V (x, z) ∝ V1(x) cos(2kz),
where k is the vertical wavenumber of the magnet stack. The wavy correction is
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Figure 10. Coefficient c3(k) of the linear instability problem for the gravest instability mode
having k′ = 3.117, Qc = −1708. See equation (33).

resonant whenever Q = (1 + Ro)/E2 is an eigenvalue of the linear stability problem
for two-dimensional rotating plane Couette flow modes with vertical wavenumber
k′ = 2k. A weakly nonlinear analysis shows that there can be either one or two stable
finite-amplitude states in these cases. For practical laboratory parameter values all
the corrections to the basic plane Couette flow are pretty small (a few per cent or
less). Under very low rotation, it may be possible to observe the z-dependent basic
flow modification.

The effects of ‘magnetic viscosity’ on the flow instability problem were studied by
perturbation analysis. The stabilization is not large, but at 10% or so, it probably
measurable for characteristic laboratory parameters. This result, for a fairly compli-
cated magnetic field distribution, is in the same range as previous numerical estimates
showing weak stabilization for spatially uniform fields.

The magnet stack approach to generating a large lateral buoyancy effect in magnetic
fluids appears plausible in that significant non-Newtonian effects are not anticipated.
Another important issue, when considering a ‘stratified shear flow’ experiment using
ferromangetic buoyancy, is the effect of small vertical non-uniformities in |B|, with
the resulting gl = g1(x)x̂ + g2(x, z). The second acceleration, though conservative,
may excite more significant waves, when there is a lateral density (or temperature)
stratification, than those found here. Such effects are under consideration.

This research was funded by the NASA program in microgravity sciences, through
grant NAG-3-2402 to the University of Colorado. I thank Dr Dan Ohlsen for
providing figure 3.

Appendix A. Perturbation magnetization and field intensity
In expanding the right-hand side of (1a) we write

B = B0 + B′, H = H0 +H ′, M = M 0 +M ′, (A 1)

where the primed quantities are the small perturbation. The accelerations we are
interested in then appear as

M · ∇H = M 0 · ∇H0 +M ′ · ∇H0 +M 0 · ∇H ′ + O(M ′ ·H ′/d), (A 2)
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where the last term on the right-hand side of (1a) expands similarly. Because of (8),
the magnetization M 0 due to the basic field intensity H0 has magnitude M s (assumed
greater than χH0 here) and is oriented along H0 = B0/µ0. Thus, the first term on
the right-hand side of (A 2) may be absorbed into the pressure. The second term is
calculated using (10).

Turning to the third term, the expansion of Maxwell’s equations gives H ′ =
B′/µ0 − M ′. Since ∇ × H ′ = 0 and ∇ ·H ′ = −∇ ·M ′, we have H ′ = ∇Φ′, and
∇2Φ′ = −∇ ·M ′. For the basic-state correction problem, M ′ = M(x, z)ŷ, and thus
the magnetization deviation has no divergence. In addition to solving the interior
problem, all magnetic boundary conditions on the side of the ferrofluid channel are
also satisfied by taking H ′ = 0. For the linear instability problem, M ′ is a general
vector proportional to the amplitude of the instability. However, it is clear from the
above that H ′ will be of order M ′. Thus, the ratio of the third term on the right-hand
side of (A 2) to the second will be of order M0M

′/M ′H0 ≈ Ms/H0 at worst. Since
Ms � H0, the dominant dynamically significant term on the right-hand side of (A 2)
is just the second one.

Appendix B. The equivalent Taylor–Couette problem
The rotating Couette flow problem considered here is asymptotically equivalent to

the cylindrical Taylor–Couette problem when the latter has a small gap compared to
the inner radius, and when the two rotation rates are nearly equal. In the cylindrical
case, let the inner and outer rotation rates be Ω, and Ω + ∆Ω, respectively, with
∆Ω/Ω � 1. Let the inner radius be R and the gap-width be d � R. The parametric
correspondence is then E = Ta−1/2, Ro = ∆ΩR/2Ωd, Q = (1 + ∆ΩR/2Ωd)Ta.
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